861 research outputs found

    Nucleon-nucleon resonances at intermediate energies using a complex energy formalism

    Full text link
    We apply our method of complex scaling, valid for a general class of potentials, in a search for nucleon-nucleon S-matrix poles up to 2 GeV laboratory kinetic energy. We find that the realistic potentials JISP16, constructed from inverse scattering, and chiral field theory potentials N3^3LO and N2^2LOopt_{opt} support resonances in energy regions well above their fit regions. In some cases these resonances have widths that are narrow when compared with the real part of the S-matrix pole.Comment: 7 pages, 5 figures, 2 Table

    No-core shell model for 48-Ca, 48-Sc and 48-Ti

    Full text link
    We report the first no-core shell model results for 48Ca^{48}Ca, 48Sc^{48}Sc and 48Ti^{48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited Ω\hbar\Omega range around 45/A1/325/A2/3=10.5MeV45/A^{1/3}-25/A^{2/3} = 10.5 MeV and a limited model space up to 1Ω1\hbar\Omega. No single-particle energies are used. We find that the charge dependence of the bulk binding energy of eight A=48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, the resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. We then introduce additive isospin-dependent central terms plus a tensor force to our Hamiltonian and achieve accurate binding energies and reasonable spectra for all three nuclei. The resulting no-core shell model opens a path for applications to the double-beta (ββ\beta\beta) decay process.Comment: Revised content and added reference

    Structure of A = 7 - 8 nuclei with two- plus three-nucleon interactions from chiral effective field theory

    Full text link
    We solve the ab initio no-core shell model (NCSM) in the complete Nmax = 8 basis for A = 7 and A = 8 nuclei with two-nucleon and three-nucleon interactions derived within chiral effective field theory (EFT). We find that including the chiral EFT three-nucleon interaction in the Hamiltonian improves overall good agreement with experimental binding energies, excitation spectra, transitions and electromagnetic moments. We predict states that exhibit sensitivity to including the chiral EFT three-nucleon interaction but are not yet known experimentally.Comment: 10 pages, 6 figures, updated references and corrected a typ

    Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei

    Get PDF
    The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations for the odd-mass Be isotopes (7<=A<=13) with the JISP16 nucleon-nucleon interaction, as evidenced by rotational patterns for excitation energies, quadrupole moments, and E2 transitions. Yrast and low-lying excited bands are found. The results demonstrate the possibility of well-developed rotational structure in NCCI calculations using a realistic nucleon-nucleon interaction.Comment: 7 pages, 6 figures; to be published in Phys. Lett.

    Boundary between Hadron and Quark/Gluon Structure of Nuclei

    Full text link
    We show that the boundary between quark-dominated and hadron-dominated regions of nuclear structure may be blurred by multi-nucleon quark clusters arising from color percolation. Recent experiments supporting partial percolation in cold nuclei and full percolation in hot/dense nuclear matter include: deep inelastic lepton-nucleus scattering, relativistic heavy-ion collisions and the binding energy in 5HeΛ^5 He_{\Lambda}.Comment: 10 pages, 4 figures; added references; improved figures; fixed a typo (wrong sign in Eqn 6); Fixed typos in Equation 2; updated reference
    corecore